
A Vulnerability Detection Framework for CMS Using
Port Scanning Technique

Md. Asaduzzaman, Proteeti Prova Rawshan, Nurun Nahar Liya, Muhmmad Nazrul
Islam, and Nishith Kumar Dutta

Department of Computer Science and Engineering,
Military Institute of Science and Technology, Dhaka-1216, Bangladesh

asadbd45@gmail.com

Abstract. Vulnerability testing of networks and vulnerability prevention are cru-
cial and required tasks in today’s world due to the increasing rate of the number of
attackers and intruders. Various scanners can help the administrators to perform
these tasks. This paper aims to propose an architecture of an open source frame-
work to efficiently detect the vulnerabilities of websites developed with Content
Management Systems (CMSs) using a port scanning technique. The proposed
framework can detect vulnerabilities based on the list of vulnerable extensions
and vulnerable core CMSs which are publicly available. The framework can ac-
commodate any kind of CMS. Developers only need to add the information of
a new CMS in the lists. As accuracy depends on the information of extensions,
the extension list was made public to the contributors so that they can append or
update the information. A large information list of two CMSs has already been
prepared for the initial fire up.

Keywords: Security Scanner; Port Scanning; Content Management System; CM-
Scan, Nmap Scripting Engine

1 Introduction

Nowadays, there is an increasing dependency on web applications. From an individual
to an organization, almost every transaction is available, stored or traded in the web.
Reliability of web services has occurred because of ease of access and its increasing
nature of productivity and operational efficiency, which in turn raised the security issue
of the web applications, that basically lies on website security and their vulnerabilities.
Web vulnerability refers to the system flaw or weakness through which the security can
be compromised and resources can be exploited. Attacker can access the flaw, thereafter
reduces the system integrity through exploitation. This can be prevented easily by us-
ing network vulnerability scanners, that identifies the security loopholes in a computer
network by inspecting the most potential targets. Network vulnerability scanners like:
SARA [10], SAINT [9], VLAD [11] and Nessus [6] are very effective but most of them
are paid and require technical knowledge to use. Whereas, Nmap [7] is a multipurpose
utility tool and a port scanner, which is used by millions of novice users and can be used
easily. It discovers services and hosts running in a computer network, including host and
port discovery. An NSE script [8] allows to do a wide variety of network assessment
tasks and customizes them.

A widely used application for managing web contents is the Content Management
System (CMS). It supports a modular and adaptable framework with the installation of
plugins, so that new features can be added and thus the main functionalities of the CMS
can be achieved by additional extensibility. Among many, mostly used CMS platforms
are: WordPress (58.8%), WeBex (12%), Joomla (6.5%) and Drupal (4.8%) [5]. They
can be kept secured if all the extensions and the plugins can be updated regularly. But
the most common problem is that amongst the huge amount of plugins, maximum are
getting out of date thus compatibility issues are created with the latest versions.

The main vulnerability issue of CMS lies within its feature-easy identification. Then
followed by outdated plugins which is the point of entry for most of the attackers, using
poor and reused codes, lack of observation of the system administrator while giving
regular updates and lack of CMS installations. The percentage of running out-of-date
plugins in the compromised sites are the biggest problem. Studies show that the 78% of
the hacked websites used WordPress, then Joomla taking up to 14% of the data sample,
6% with websites with raw codes then consecutively Magneto and Drupal [12]. With
these kind of publicly disclosed vulnerabilities, it is easier for the attackers to exploit.
Network security professionals often are to depend on the other paid vulnerability as-
sessment tools in order to asses the vulnerabilities of web applications(including CMS).
Besides almost all network security professionals along with network administrators
are expert on using open source port scanner. So, an advanced framework can be in-
corporated in the port scanner that will allow users to assess vulnerabilities of Content
Management Systems.

Therefore, the objective of this paper is to integrate the most required functionalities
of a vulnerability scanner for the Content Management Systems based on the vulnerable
extensions along with a popular port scanner. In order to attain the objective, this re-
search proposes to build an open source framework which incorporates an NSE script in
a port scanner(Nmap) that can detect the installed extensions in a Content Management
System, hence detect the vulnerable extensions along with the affected versions.

The remaining sections of this paper are organized as follows: a brief overview of
the related work is presented in section 2, the conceptual framework is discussed in sec-
tion 3. In section 4, the design and development of the framework is discussed. Further,
the evaluation of the framework is presented in section 5, followed by a discussion and
conclusion in section 6.

2 Literature Review

This research focused to the field of CMS based web applications, their vulnerabilities,
security aspects and contextual threats and the ways they can be exploited. To find out
the related literature, a search was conducted in the major scholar databases including
ACM Scholar, Google Scholar, IEEE Explorer and ScienceDirect using suitable search
strings. The related literature are presented briefly below.

Most of the CMSs are customizable, adaptable and built in open source frameworks
(WordPress, Joomla or Drupal) [17], hence they are vulnerable by their nature. Also, a
shared environment provides the users with shared flaws which encourages the security

researchers and the hacker community. Once these vulnerable loopholes are found, they
are used for mass attacks.

Yu et al. [20] made a model of mapping these vulnerabilities and attack patterns by
analyzing the attack targets. He also developed a methodology to test and detect them in
web services. Scott et al. [18] introduced a Secured Web Applications Project(SWAP)
against various application level attacks. It protects against a large class of attacks than
existing web methodologies. In addition, Kals et al. [16] proposed SecuBat, another
vulnerability scanner to analyze web sites for exploitable SQL and XSS vulnerabilities.

As the most common format of exploit is SQL injections, Wassermann et al. [19]
approached an automated and precise solution. It characterizes the values of string vari-
able assuming with a context free grammar hence tracking the user modifiable data
by modeling string operations. It is implemented in PHP, discovers both known and
unknown vulnerabilities as well as scales to large sized programs. Huang et al. [14]
created a static analysis algorithm and a tool named WebSSARI, which statistically
verifies CMSs’ code where run time overhead is reduced to zero with sufficient anno-
tations. After verifying, it automatically secures the potentially vulnerable sections of
the code. Jovanovic et al. [15] introduced another static analysis tool(Pixy). For detect-
ing XSS vulnerabilities in PHP, as well as detecting taint-style algorithms like SQL or
command injections Pixy uses data-flow analysis and is written in Java. Fu et al. [13]
proposed another static analysis tool which automatically generates test cases exploiting
SQL injection vulnerabilities in ASP.NET web applications.

Nmap has it’s own scripts as well which can be used to detect the vulnerabilities
of wordpress and drupal, name of the scripts are http-wordpress-enum.nse and http-
drupal-enum.nse respectively. These scripts only allow users to detect vulnerabilities
of wordpress [3] and drupal [2] respectively based on a limited number of extensions
listed in wp-plugins.lst, wp-themes.lst, drupal-modules.lst and drupal-themes.lst [4].
But these are two different script and unable to accommodate new CMS.

In sum, though there are numerous existing methods of detecting vulnerabilities of
web based applications, almost all of them are paid. The most required functionalities
of vulnerability scanner and port scanner are not integrated together yet. Although some
functionalities are integrated, these only cover two specific CMSs. Thus this research
work will focus to develop an open source framework which will achieve these features
using port scanning technique in the context of any Content Management Systems.

3 Conceptual Framework

The proposed conceptual framework for vulnerability detection is depicted in Figure 1.
The whole design process consists of two stages: Information Gathering Stage and Op-
erational Stage. In the Information Gathering Stage, informational details about a new
CMS will be collected. Based on the information achieved, the main framework will be
run to detect the vulnerabilities during the Operational Stage.

One of the major concerns is to accurately detect the vulnerable extensions or vul-
nerable core CMS along with minimizing the security risks hence it is required to pro-
tect the system using port scanning technique. Another concern is to adapt a newly de-
veloped CMS in the framework. It is needed to enrich the information list of the CMSs

in order to maximize the accuracy. So, the repository is made public so that contributors
can enrich the information of existing CMS and append information about a new CMS
during the information gathering stage. Each of the contribution will be highly appreci-
ated in the contribution section. The information contains details (i.e CMSs’ name and
common directory structure for the extensions) list of extensions available to install and
list of vulnerable extensions which are publicly available in JSON format. Conventions
to contribute in the repository are documented in the development process, which can
also be found in the GitHub repository documentation [1].

In the Operational Stage, the framework is run against a web server (the target host).
The framework constructs a URL pointing to the directory structure which resides in the
aforementioned JSON file. It checks for the existence of the directory (HTTP response:
200) and takes decision accordingly. If the directory exists, it goes for further operation.
Following the similar process, extensions are extracted from the web server those which
are already installed in the CMS. Vulnerability checking of this CMS is performed by
analyzing the installed extensions with respect to the vulnerable extension’s list.

The scanner returns a list of vulnerable extensions. It can also return the affected
versions, provided that the installed extension and vulnerable extension contain version
information.

Scan and find
web service port
or acquire port
from parameter

Send HTTP
request for

each CMS with
constructed

URL

Detect CMS
analyzing HTTP
response: 200

Construct URL using
directory structure

and extension name
for detected CMS

Check
extension’s

vulnerability

Save
installed

extensions

Detect extension
analyzing status:

200

Send HTTP
request to

the URL

Save installed
extensions,
version and
vulnerability

Target Host

cmsname_
vulnerable_
extensions.

json
Suggest a
probable
solution

Operational
Stage

Information
Gathering
Stage:
Collecting
Extensions

Information
Gathering
Stage:
Collecting
Vulnerabilities

1 2 3 4 5 6

78910

construct URL
using directory

structure to read
version of the

extension

send request
and extract

version from
readable file,

store

Installed ExtensionsInstalled Extensions and version

Installed
Extensions
with version,
vulnerability

1112

Contribution in
the Repository

Gather information
from open source

+ initial fire up

Contribution in
the Repository

Gather information
from open source +

initial fire up

cmsname_
extensions.

json

cms_details
.json

Fig. 1. Working process of the proposed framework

4 Development of the Framework

The framework can accommodate any newly released CMS. This framework works
in two phases- firstly, it gathers the list of CMS’ details along with the list of all the
extensions which can be installed with the list of the vulnerable extensions as refers
as the Information Gathering Stage. Secondly, a website is scanned with vulnerability
detection based on the information gathered in the first stage, using a port scanning
technique(Nmap) as referred as the Operational Stage.

Information Gathering Stage This part of the framework is open to all the contrib-
utors. Any contribution to this open source tool will be highly appreciated in the con-
tributors section of GitHub. Initially, the GitHub repository contains information of
WordPress and Joomla which can be updated through the proper pull requests and ver-
ification. Anytime, new CMSs can be added to the repository by appending the lists
of information by following the instructed conventions. There is a cms details.json file
which contains the details about the CMS in an array. In order to append a new CMS in
the framework, the cms details.json must be updated with the new CMS name, CMS
version file directory and array of CMS extension file directory. A new CMS entry can
be appended to the array according to the following syntax:

[{
"cms_name": "example",
"cms_version_file_directory": "/example.txt",
"cms_extension_directory": [

"/directory_1",
"/directory_2"

]
}]

The cms version directory is the directory path of a file that contains version of the
installed CMS and the cms plugin directory contains the array of the directories those
contain the installed extensions.

There are two other files to be created for each CMS. One is the cmsname extension.
json that contains all the extensions available for installation in the cmsname CMS using
the following syntax:

[{
"extension": ["example_1","example_2"],
"directory": ["dir_1/{ext}/{ext}.txt",
"dir_2/{ext}/{ext}.txt"]

}]

Here, directory denotes the file paths those contain version of the extensions. In the Op-
erational Stage ext will be replaced with the extension name. Another file to be created
for each CMS with the name cmsname vulnerable extensions.json that contains all the
vulnerable extensions along with the list of affected versions for cmsname CMS using
the following syntax:

[{
"vulnerable_plugin":"vulnerable_plugin_name",
"affected_version":["4.5","2.1"],
"description_of_vulnerability":"SQLInjection",
"code_type":["cve","exploitdb"],
"code":[{"cve":"xxxxx","exploitdb":"xxxxx"}],
"source_url":["https://example.com/xxxx/",
"https://example.com/xxxx"]
}]

The above syntax may be changed and will be updated accordingly in the GitHub doc-
umentation in case any change in the framework.

Operational Stage In this stage, the framework works like an operational tool using
the gathered information from the previous stage. In this paper, the operational stage for
the proposed framework is developed as an Nmap script written in Lua programming
language. Name of the script is cmscan.nse. When the nmap –script cmscan target com-
mand is run in the terminal, the script is fired and it starts working. At first, it detects the
cms looking into the cms details.json and thereby recognizing the directory structure.
It reads the version file, provided that the file is available in order to check the vulnera-
bility of the core CMS. Then it takes the directory path of installed extensions from the
same file. It looks for the cmsname extension.json file to check an extension’s existence
in the CMS. A URL is constructed from the directory path of extensions when it’s ap-
pended after the host. Then it checks for the URL’s existence using the http request. If
the extension exist in the CMS, the version is extracted by reading the file , URL is con-
structed using the directory given. That checks the cmsname vulnerable extensions.json
file to check whether any version of the extension is vulnerable or not. If the version is
not found, it is suggested that the user looks for the extension manually.

In this way, the vulnerable plugins are detected along with it’s cve code, description
of the vulnerability, source URL. The process is made faster and efficient using the
concept of multi-threading and parallelism. Initially the framework has a base of huge
list of information that contain two CMSs: wordpress and joomla for the initial fire up.
However, more CMSs can be accommodated in the framework.

5 Performance Evaluation of the Framework

To evaluate the performance of the framework a simple experiment is conducted in two
phases. Firstly, two web servers are setup with two different CMSs (i.e Wordpress and
Joomla) to evaluate the performance. Secondly, the framework is run against a number
of web servers within a private network, where the servers are mostly operated with
CMSs. In the first phase, wordpress and joomla are installed in two different servers.
Some extensions are installed in both of the servers. Whereas, some vulnerable exten-
sions are installed in the servers intentionally. The two applications are hosted in the
servers with IPs 192.168.0.10 and 192.168.0.12 for joomla and wordpress respectively.
The nmap scan is performed against these two IP addresses by running the following
commands in terminal-

Fig. 2. Passive scan result of the wordpress host

nmap --script http-cmscan -p80 192.168.0.10
nmap --script http-cmscan -p80 192.168.0.12

Figure 2 shows the scan result for wordpress based web application. The scan result
finds 6 plugins, 2 of the plugins are vulnerable. The name of the vulnerable plugins are
loco-translate 2.2.1 and wp-cerber 8.0. The scan returns result in 1.25 seconds. While
figure 3 shows the installed plugins and plugin details from the wordpress admin panel.
Another snapshot of scan result for joomla based web application is depicted in figure
4 and the extensions page of joomla admin panel is depicted in figure 5. In this scenario
four extensions are found in the server, one of the extensions is found to be vulnerable.

Fig. 3. Wordpress extension page from admin panel

Fig. 4. Passive scan result of the joomla host

Fig. 5. Joomla extension page from admin panel

In the next phase, the script is run against a block of ip address (172.16.0.0/24)
where a number of CMSs are hosted. Nine hosts are found those run CMSs in web

Table 1. Sample time and vulnerability of target websites.

Target CMS Time(Sec) #plugins #vulnerability

172.16.0.12 Wordpress 24.08 5 1
172.16.0.13 Wordpress 27.11 10 2
172.16.0.32 Joomla 257.14 98 14
172.16.0.33 Joomla 165.75 61 11
172.16.0.34 Wordpress 100.45 47 5
172.16.0.42 Wordpress 25.79 6 0
172.16.0.78 Wordpress 59.98 21 1
172.16.0.74 Wordpress 41.841 13 0
172.16.0.61 Wordpress 28.44 8 1

server, most of the servers are run with Wordpress. The result summary is given in the
Table 1. The result shows that using the stated port scanning technique, the framework
can work efficiently and accurately based on the information list. Thus the proposed
framework will help the security specialists to figure out the serious vulnerabilities
which are potential to cause huge damages.

6 Discussion and Conclusions

In this paper, a framework is proposed that integrates the most important components
of a vulnerability scanner with a port scanner in the context of CMS. Knowledge base
of this framework is CMSs’ information which is mostly dependent on the contribu-
tors. But the information will be updated from servers as well, which minimizes the
framework’s dependency on the contributors. As a result the framework will help in
vulnerability assessment by detecting the vulnerabilities of a CMS efficiently.

The main implication of the framework is that it requires less effort to operate. Also,
it is not needed to go through the hassle of paid and full-fledged vulnerability scanners.
The network administrator can also use this to know about the possible vulnerabilities.

The framework is currently being operated using port scanning technique and is
dependent on Nmap. Also the knowledge base of this framework is mostly dependent
on the contributors. The run time of the framework varies with the configuration of
machine and network connectivity with the target host. The machine needs internet
connection to perform the scan. In future, the main initiative is to make the framework
independent and as well as to incorporate in the other popular security tools. Also the
aim is to minimize the dependency on the contributors by deploying servers for the
purpose of gathering and updating the information about CMS. The scan can also be
performed without internet connection, in that case the information lists are to be down-
loaded to the local machine in the same directory of the script. This process does not
ensure the updated repository to be resided in the user’s machine.

In this new course of technological evolution where everyone uses devices which
is more or less connected to common or private networks, access, misuse and hacking
of files and directories is happening more than ever. The framework can help find these
vulnerabilities and detect the ways through which network interrogation is possible to
inform the users or the administrator, thus protecting from further attacks by making a
more integrated and rigid network.

References

1. Github Repository of the framework. Available on: https://github.com/syri0/cmscan/
tree/master/data, [Online; Last accessed: 31 August 2019]

2. http-drupal-enum Script. Available on: https://svn.nmap.org/nmap/scripts/
http-drupal-enum.nse, [Online; Last accessed: 04 September 2019]

3. http-wordpress-enum Script. Available on: https://svn.nmap.org/nmap/scripts/
http-wordpress-enum.nse, [Online; Last accessed: 04 September 2019]

4. List of data in NSE Libraries. Available on: https://svn.nmap.org/nmap/nselib/
data/, [Online; Last accessed: 04 September 2019]

https://github.com/syri0/cmscan/tree/master/data
https://github.com/syri0/cmscan/tree/master/data
https://svn.nmap.org/nmap/scripts/http-drupal-enum.nse
https://svn.nmap.org/nmap/scripts/http-drupal-enum.nse
https://svn.nmap.org/nmap/scripts/http-wordpress-enum.nse
https://svn.nmap.org/nmap/scripts/http-wordpress-enum.nse
https://svn.nmap.org/nmap/nselib/data/
https://svn.nmap.org/nmap/nselib/data/

5. Market Share:Top Website Platforms and Example Sites. Available on: https://
websitesetup.org/popular-cms/, [Online; Last accessed: 29 November 2017]

6. Nessus Vulnerability Scanner. Available on: https://www.tenable.com/products/
nessus-vulnerability-scanner, [Online; Last accessed: 29 November 2017]

7. Nmap-Network Mapper. Available on: https://nmap.org/, [Online; Last accessed: 29
November 2017]

8. NSE-Nmap Scripting Engine. Available on: https://nmap.org/book/nse.html, [Online;
Last accessed: 29 November 2017]

9. SAINT Cybersecurity solution. Available on: http://www.saintcorporation.com/, [On-
line; Last accessed: 29 November 2017]

10. Security Auditor’s Research Assistant. Available on: http://www-arc.com/sara/, [On-
line; Last accessed: 29 November 2017]

11. VLAD the scanner. Available on: http://www.decuslib.com/decus/vmslt00b/net/
vlad_readme.html, [Online; Last accessed: 29 November 2017]

12. Website Hcked Trend Report. Available on: https://sucuri.net/website-security/
website-hacked-report., [Online; Last accessed: 29 November 2017]

13. Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., Tao, L.: A static analysis framework for
detecting sql injection vulnerabilities. In: Computer Software and Applications Conference,
2007. COMPSAC 2007. 31st Annual International. vol. 1, pp. 87–96. IEEE (2007)

14. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web application
code by static analysis and runtime protection. In: Proceedings of the 13th international
conference on World Wide Web. pp. 40–52. ACM (2004)

15. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web appli-
cation vulnerabilities. In: Security and Privacy, 2006 IEEE Symposium on. pp. 6–pp. IEEE
(2006)

16. Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: Secubat: a web vulnerability scanner. In:
Proceedings of the 15th international conference on World Wide Web. pp. 247–256. ACM
(2006)

17. Meike, M., Sametinger, J., Wiesauer, A.: Security in open source web content management
systems. IEEE Security & Privacy 7(4) (2009)

18. Scott, D., Sharp, R.: Developing secure web applications. IEEE Internet Computing 6(6),
38–45 (2002)

19. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection vul-
nerabilities. In: ACM Sigplan Notices. vol. 42, pp. 32–41. ACM (2007)

20. Yu, W.D., Aravind, D., Supthaweesuk, P.: Software vulnerability analysis for web services
software systems. In: Computers and Communications, 2006. ISCC’06. Proceedings. 11th
IEEE Symposium on. pp. 740–748. IEEE (2006)

https://websitesetup.org/popular-cms/
https://websitesetup.org/popular-cms/
https://www.tenable.com/products/nessus-vulnerability-scanner
https://www.tenable.com/products/nessus-vulnerability-scanner
https://nmap.org/
https://nmap.org/book/nse.html
http://www.saintcorporation.com/
http://www-arc.com/sara/
http://www.decuslib.com/decus/vmslt00b/net/vlad_readme.html
http://www.decuslib.com/decus/vmslt00b/net/vlad_readme.html
https://sucuri.net/website-security/website-hacked-report.
https://sucuri.net/website-security/website-hacked-report.

	A Vulnerability Detection Framework for CMS Using Port Scanning Technique

